Acetyl coenzyme A trilithium salt trihydrate

Supplier: MP Biomedicals

0210049080 0210049001 0210049005 0210049010 0210049025
ICNA0210049080EA 2260 SGD
ICNA0210049080 ICNA0210049001 ICNA0210049005 ICNA0210049010 ICNA0210049025
Acetyl coenzyme A trilithium salt trihydrate
Enzymes

Acetyl-CoA is produced via beta-oxidation of fatty acids, via the metabolism of carbohydrates - glucose 6-phosphate to pyruvate to acetyl-CoA and via the catabolism of amino acids. Acetyl-CoA has a number of metabolic opportunities. It is metabolised in the tricarboxylic acid cycle to produce carbon dioxide, water and energy.


  • Extinction Coefficient (E1%): EM:(260 nm): 16400 (water), (259): 15400 (0,1 M PO₄ buffer, pH 7), (232 nm): 8700 (water) (Lit.)
  • Soluble in water (100 mg/ml - clear, colourless solution)
  • GHS symbol and signal word: GHS07 and warning


It can also be metabolised to fatty acids, cholesterol and steroid hormones. Acetyl-CoA also participates in a number of acetylation reactions, including the formation of acetylcholine, melatonin, N-acetylglucosamine, N-acetylgalactosamine and N-acetylneuraminic acid. Acetyl-CoA is involved in the acetylation of proteins and peptides. Histone acetylation is an epigenetic mechanism of gene regulation. In general, chromatin fractions enriched in actively transcribed genes are also enriched in highly acetylated core histones, whereas silent genes are associated with nucleosomes with a low level of acetylation. Nucleosomes are the fundamental units of chromosomes.


Acetyl coenzyme A is an essential cofactor and carrier of acyl groups in enzymatic acetyl transfer reactions. It is a key precursor in lipid biosynthesis, and the source of all fatty acid carbons. It is a positive regulator of pyruvate carboxylase. It is a percursor of the neurotransmitter acetylcholine.The acetic acid moiety which is bound by a high-energy bond (free energy 34.3 kJ/mol) to the -SH group of coenzyme A is a precursor to fatty acids, steroids and other naturally occurring compounds, such as terpenes and acetogenins present in plants.


The biosynthetic pathways for acetyl-CoA have been published. In the transfer reaction by acetyl-CoA of the C2 acetyl fragment, either the carboxyl group or the methyl group may react (electrophilic vs. nucleophilic reaction, respectively). Acetyl-CoA is an essential cofactor and carrier of acyl groups in enzymatic acetyl transfer reactions. It is formed either by the oxidative decarboxylation of pyruvate in mitochondria, by the oxidation of long-chain fatty acids, or by the oxidative degradation of certain amino acids. Acetyl-CoA is the starting compound for the citric acid cycle (Kreb′s cycle). It is also a key precursor in lipid biosynthesis, and the source of all fatty acid carbons. Acetyl-CoA positively regulates the activity pyruvate carboxylase. It is a precursor of the neurotransmitter acetylcholine. Histone acetylases (HAT) use Acetyl-CoA as the donor for the acetyl group use in the post-translational acetylation reactions of histone and non-histone proteins.

Order Now


Learn more

About VWR

Avantor is a vertically integrated, global supplier of discovery-to-delivery solutions for...

Learn more About VWR